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Abstract

A numerical model for the three-dimensional simulation of liquid–gas flows with free surfaces is presented. The

incompressible Navier–Stokes equations are assumed to hold in the liquid domain. In the gas domain, the velocity

is disregarded, the pressure is supposed to be constant in each connected component of the gas domain and follows

the ideal gas law. The gas pressure is imposed as a normal force on the liquid–gas interface. An implicit splitting scheme

is used to decouple the physical phenomena. Given the gas pressure on the interface, the method described in [J. Com-

put Phys. 155 (1999) 439; Int. J. Numer. Meth. Fluids 42(7) (2003) 697] is used to track the liquid domain and to com-

pute the velocity and pressure fields in the liquid. Then the connected components of the gas domain are found using an

original numbering algorithm. Finally, the gas pressure is updated from the ideal gas law in each connected component

of gas. The implementation is validated in the frame of mould filling. Numerical results in two and three space dimen-

sions show that the effect of pressure in the bubbles of gas trapped by the liquid cannot be neglected.
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1. Introduction

Industrial processes such as casting or injection filling involve complex free surface phenomena that can

be nowadays solved numerically using commercial softwares.

Complex flows with liquid–gas free surfaces have already been considered in the literature. In most of the
numerical models [5,7–10,12,17,33–37], it was assumed that the behaviour of the liquid–gas mixture was

that of an incompressible two-phase flow. Compressibility effects in two-phase flows were considered in

[1,2,16,21,29,30], while methods mixing an incompressible liquid and a compressible gas were proposed

in [6,11].

These two-phase flowmodels are computationally expensive in three space dimensions since both velocity

and pressure must be computed at each grid point of the whole liquid–gas domain. Our goal is to present a

numerical model in three space dimensions which allows the velocity field to be computed only in the

(incompressible) liquid, but without neglecting compressibility effects of the gas onto the liquid.
The model is as follows. The velocity in the gas is disregarded and the compressibility effects of the gas

are taken into account by computing a constant pressure inside each connected component of gas using the

ideal gas law. Given the gas pressure onto the liquid–gas free surface, the method described in [19,20] is

used to track the liquid domain by using a volume-of-fluid method [3,14,15,26,27,31,39] and to compute

the velocity and pressure fields in the liquid. Then the connected components of the gas domain are found

using an original numbering algorithm. Finally, at given time t, the gas pressure is assumed to be constant

in each bubble of gas and is updated from the ideal gas law.

Following [19,20], an implicit time splitting algorithm is applied to decouple all the physical phenomena.
Advection phenomena (including the motion of the volume fraction of liquid and the prediction of the fluid

velocity) are solved first. Then, the bubbles of gas are tracked by using an original numbering algorithm.

The pressure inside each bubble of gas is computed using the ideal gas law (pressure times volume is con-

stant) and finally a generalized Stokes problem is solved in order to update the velocity in the liquid. Sur-

face tension effects are neglected, as they are not important in mould filling applications. They will be

presented in a forthcoming paper.

Numerical results in two and three space dimensions have been presented in [19,20] in the case when the

pressure in the gas is not taken into account. In this paper, two- and three-dimensional results are presented
when the influence of the gas on the liquid is considered.

The structure of the paper is the following: In Section 2, the governing equations are proposed. In Sec-

tions 3 and 4, time and space discretizations are presented. The original algorithm that numbers the con-

nected components of gas is described in detail. Also, the computation of the pressure in each connected

component of gas is discussed. In Section 5, numerical results in two and three dimensions are compared

to experiments and numerical results already reported in [19,20].
2. The mathematical model

2.1. Governing equations in the liquid

The model presented in this section is an extension of the one described in [19,20]. The improvement

comes from the fact that the influence of the surrounding gas is now considered. Let K be a cavity of

Rd ; d ¼ 2; 3 in which the fluid must be confined, and let T > 0 be the final time of simulation. For any given

time t, let X(t) be the domain occupied by the fluid, let C(t) be the free surface defined by oX(t)noK and let
QT be the space–time domain containing the liquid, i.e. QT = {(x,t):x 2X(t), 0 < t < T}.

Some of the notations are reported in Fig. 1 in the frame of a two-dimensional situation, namely the

filling of an S-shaped channel. This situation corresponds to water entering a thin S-shaped channel lying



Fig. 1. Computational domain for the filling of an S-shaped channel. At initial time, the channel K is empty. Then water enters from

the bottom and fills the channel.
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between two horizontal planes thus gravity can be neglected. A valve is located at the end of the channel so
that gas may escape.

In the liquid region, the velocity field v : QT ! Rd and the pressure field p : QT ! R are assumed to sat-

isfy the time-dependent, incompressible Navier–Stokes equations, that is
q
ov

ot
þ qðv � rÞv� 2div lDðvÞð Þ þ rp ¼ f in QT; ð1Þ

divv ¼ 0 in QT: ð2Þ

Here DðvÞ ¼ 1

2
ðrvþrvTÞ is the rate of deformation tensor, q the constant density and f the external forces.

In order to take into account turbulence effects, a simplified algebraic model is chosen [32]. The viscosity l
is defined by l = lL + lT, where lL is the laminar, constant, viscosity and lT = lT(v) is the additional tur-
bulent viscosity, defined by
lTðvÞ ¼ aTq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðvÞ : DðvÞ

p
; ð3Þ
where aT is a parameter to be chosen, see Section 5.3. The use of a turbulent viscosity is unavoidable in

order to obtain numerical results that compare well to experiments, since large Reynolds numbers and thin

boundary layers are involved. However, the goal of this paper being to show the influence of the gas pres-

sure on the liquid, the turbulence model chosen here is the simplest possible.
Let u : K� ð0; T Þ ! R be the characteristic function of the liquid domain QT. The function u equals one

if liquid is present, zero if it is not. In order to describe the kinematics of the free surface, u must satisfy (in

a weak sense):
ou
ot

þ v � ru ¼ 0 in QT: ð4Þ
The initial conditions are the following. At initial time, the characteristic function of the liquid domain u is

given, which defines the liquid region at initial time:
Xð0Þ ¼ fx 2 K : uðx; 0Þ ¼ 1g:
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The initial velocity field v is then prescribed in X(0). Let us now turn to the boundary conditions for the

velocity field. On the boundary of the liquid region being in contact with the walls (that is to say the bound-

ary of K, see Fig. 1), inflow, slip or Signorini boundary conditions are enforced, see [19,20]. The reason for

using slip instead of no slip boundary conditions along the walls is due to the fact that, since large Reynolds

numbers are involved, no slip boundary conditions would induce strong boundary layers along the walls,
which would require fine layered meshes.

On the free surface C(t), forces due to surface tension effects are neglected in this paper, so that the only

forces acting on the free surface are the normal forces due to the pressure of the surrounding gas:
Fig. 2.

liquid
�pnþ 2lDðvÞn ¼ �Pn on CðtÞ; t 2 ð0; T Þ; ð5Þ

where n is the unit normal of the liquid–gas free surface oriented toward the gas and P is the pressure in the

gas. For example, consider the situation of Fig. 2, namely the filling of a two-dimensional S-shaped cavity
(the numerical experiment is described in Section 5). When the cavity is filled with liquid, the gas between

the valve and the liquid can escape, thus P = Patmo is the atmospheric pressure on the upper part of the

liquid–gas interface. However, a fraction of gas is trapped by the liquid and cannot escape. A resulting force

acts on the liquid–gas interface which prevents the bubbles from vanishing during experiment.

2.2. Governing equations in the gas

Consider again the case of Fig. 2. Some gas is trapped by the fluid and is compressed. In our model, the
velocity in the gas is disregarded, since modelling the gas velocity would require solving the Euler compress-

ible equations, which is CPU time expensive.

The pressure P in the gas is assumed to be constant in each bubble of gas, that is to say in each connected

component of the gas domain. Let k(t) be the number of bubbles of gas at time t and let Bi(t) denote the

domain occupied by the bubble number i (the ith connected component). Let Pi(t) be the pressure in Bi(t).

The pressure in the gas P : K n XðtÞ ! R is then defined by:
P ðx; tÞ ¼ P iðtÞ; if x 2 BiðtÞ:

Moreover, the gas is assumed to be an ideal gas. Let Vi(t) be the volume of Bi(t). At initial time, all the gas

bubbles have given pressure. At time t, the pressure in each bubble is computed by using the ideal gas law:
Filling of a S-shaped cavity. The gas in the upper part of the cavity is free to escape through the valve. The gas trapped by the

may exert a force on the liquid.



Fig. 3

P(t + s

Fig. 4

atmos

P2(t +
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P iðtÞV iðtÞ ¼ constant i ¼ 1; . . . ; kðtÞ; ð6Þ

with constant temperature. It is assumed in the following that the total fraction number of molecules inside
the set of bubbles which are not in contact with a valve, see Fig. 2, is conserved between two time steps.

Note that this total fraction number of molecules in one bubble is proportional to the product of the pres-

sure of the bubble times its volume since the temperature is assumed to be constant. Thus, the number of

molecules of trapped gas is conserved between time t and t + s.
The case of a single bubble is first discussed. The situation of Fig. 3 is considered. Assume that the pres-

sure P(t) in the bubble at time t and the volumes V(t) and V(t + s) are known. The fraction number of mol-

ecules inside the bubble is conserved, so that the gas pressure at time t + s is computed from the relation
P ðt þ sÞV ðt þ sÞ ¼ P ðtÞV ðtÞ:

The case when bubbles of gas are created is now discussed. The situations of Figs. 4 and 5 are considered. In

Fig. 4, the broken dam problem in a confined domain is described. A water column is kept in the left side of

a cavity by a fictitious dam. The dam is removed at time t = 0. At time t, the bubble number 2 is created

with volume V2(t) and atmospheric pressure Patmo. If the volume V2(t + s) of this bubble is known at time

t + s, then the gas pressure at time t + s is computed from the relation
P 2ðt þ sÞV 2ðt þ sÞ ¼ P 2ðtÞV 2ðtÞ ¼ P atmoV 2ðtÞ:

The situation of Fig. 5 corresponds to the merging of two bubbles. The pressure at time t + s is computed

by taking into account the conservation of number of molecules in the bubbles which yields

P1(t + s)V1(t + s) = P1(t)V1(t) + P2(t)V2(t).
. One single bubble is floating in the liquid. The product PV remains constant between time t and time t + s, i.e.

)V(t + s) = P(t)V(t).

. Broken dam in a confined domain, creation of a bubble. At time t, gas is trapped by the liquid and the pressure equals

pheric pressure P1(t) = Patmo, P2(t) = Patmo. At time t + s, the pressure in bubble 2 is computed from the relation

s)V2(t + s) = P2(t)V2(t) = PatmoV2(t).



Fig. 5. Merging of two bubbles between time t and time t + s. The pressure in bubble 1 at time t + s is computed from the relation

P1(t + s)V1(t + s) = P1(t)V1(t) + P2(t)V2(t).
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The case when one bubble splits into two bubbles is now discussed, see Fig. 6. The number of molecules

inside the gas domain is conserved between time steps t and t + s, that is
Fig. 6.

t + s.

Fig. 7.

and sp
P 1ðt þ sÞV 1ðt þ sÞ þ P 2ðt þ sÞV 2ðt þ sÞ ¼ P 1ðtÞV 1ðtÞ:

In this case, if the volumes V1(t + s),V2(t + s) and V1(t) are known and if we know the relative fraction of

molecules in the bubble 1 at time t which is in bubble 1 (respectively 2) at time t + s, the pressures P1(t + s)
and P2(t + s) at time t + s can be computed.

In most cases and if the time step s is small enough, one bubble either remains one bubble as in Fig. 3 or

may be split into two bubbles, as in Figs. 4 or 6, or two bubbles may merge into one, as in Fig. 5. Excep-
tionally, more complex situations may happen as illustrated for instance in Fig. 7. The numerical processing

of all these cases will be discussed in Section 3.3.
Splitting of one bubble into two bubbles. Each molecule in the bubble number 1 at time t appears in one of the bubbles at time

Splitting and merging of bubbles at the same time. Two bubbles at time t lead to two other bubbles at time t + s after merging

litting.
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The mathematical description of our model is now completed. The model unknowns are the character-

istic function u in the whole cavity, the velocity v and pressure p in the liquid domain. Additional unknowns

are the bubbles of gas, i.e. the connected components of the gas domain, and the constant pressure Pi in

each bubble of gas. These unknowns satisfy Eqs. (1), (2), (4) and (6) with the boundary condition (5) on

the free surface C(t).
3. Time discretization

In [19,20], an implicit, order one splitting algorithm was used to solve (1)–(5) with P = 0 in (5) by decou-

pling the advection phenomena from the diffusion phenomena. In this paper, this splitting algorithm is

extended to the case when the pressure in the gas, P, is computed with (6).

Let 0 = t0 < t1 < t2 < � � � < tN = T be a subdivision of the time interval [0,T], define sn = tn � tn � 1 the nth
time step, n = 1,2, . . . ,N, s the largest time step.

Let un � 1, vn � 1, Xn�1, kn � 1 and Bn�1
i , Pn�1

i , i = 1,2, . . . ,kn � 1 be approximations of u, v, X, k and Bi, Pi,

i = 1,2, . . . ,k, respectively, at time tn � 1 (please remember that k is the number of bubbles in the gas at given

time). Then the approximations un, vn, Xn, kn and Bn
i ; Pn

i , i = 1,2, . . . ,kn at time tn are computed by means of

the following implicit splitting algorithm, as illustrated in Fig. 8.

First two advection problems are solved, leading to a prediction of the new velocity vn � 1/2 together with

the new approximation of the characteristic function un at time tn, which allows to determine the new fluid

domain Xn and gas domain KnXn. The provisional value vn � 1/2 is a prediction of the velocity in the liquid
at time tn. It does not take into account the diffusion phenomenon and incompressibility constraint and

therefore is intermediate. It will be corrected in the following diffusion step to obtain the approximation

vn of the velocity at time tn. Then, the connected components of gas (bubbles) Bn
i ; i ¼ 1; . . . ; kn are tracked

with a procedure we explain in the following and the pressure Pn
i in each bubble Bn

i is computed. Finally, a

generalized Stokes problem is solved on Xn with boundary condition (5) on the liquid–gas interface, Signo-
Fig. 8. The splitting algorithm (from left to right and top to bottom). At time tn � 1, the quantities un � 1, vn � 1, Xn � 1, kn � 1 and

Bn�1
i ; Pn�1

i ; i ¼ 1; 2; . . . ; kn�1 are known (top left). Two advection problems are solved to determine the new approximation un of the

characteristic function of the liquid domain, the new liquid domain Xn and the predicted velocity vn � 1/2 (top right). Then a constant

pressure Pn
i is computed in each bubble Bn

i (bottom left). Finally, a generalized Stokes problem is solved to obtain the velocity vn and

the pressure pn in the new liquid domain Xn, taking into account the pressure Pn
i on the liquid–gas interface (bottom right).
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rini-type conditions on the boundary of the cavity K and the velocity vn and pressure pn in the liquid are

obtained.

This time splitting algorithm introduces an additional error on the velocities and pressures which is of

order Oðs2Þ at each time step or equivalently of order OðsÞ on the whole simulation, see e.g. [18]. On the

other hand, the introduction of this splitting algorithm permits to decouple the motion of the free surface
from the diffusion step and to solve the Stokes problem in a fixed domain. In the light of this remark, let us

focus on the different steps of the splitting algorithm in the following.
3.1. Advection step

Solve between the times tn � 1 and tn the two advection problems:
ov

ot
þ ðv � rÞv ¼ 0; ð7Þ

ou
ot

þ v � ru ¼ 0; ð8Þ
with initial conditions given by the values of the functions v and u at time tn � 1. This step is solved exactly

by the method of Characteristics [23–25,38] and yields a prediction of the velocity vn � 1/2 and the approx-

imation of the characteristic function of the liquid domain un at time tn, that is:
vn�
1
2ðxþ snvn�1ðxÞÞ ¼ vn�1ðxÞ;

unðxþ snvn�1ðxÞÞ ¼ un�1ðxÞ
for all x belonging to Xn � 1. The domain Xn is then defined as the set of points such that un equals one.

3.2. Numbering of the bubbles of gas

Given the new liquid domain Xn, the first task consists in finding the gas bubbles Bn
i ; i ¼ 1; . . . ; kn. Then

the pressure inside each bubble has to be computed.

The key point is to find the number of bubbles kn (that is to say the number of connected components)

and the bubbles Bn
i ; i ¼ 1; . . . ; kn. The algorithm for detecting a connected component in the gas domain is

the following. It introduces a sequence of auxiliary elliptic problems. At each time step, given a point P in

the gas domain KnXn, we first search for a function u such that �Du = dP in KnXn, with u = 0 on Xn and u

continuous. Since the solution u to this problem is strictly positive in the connected component containing

point P and vanishes outside, the first bubble is found. The physical interpretation in two space dimensions

is the following. An elastic membrane is placed over the cavity K, deformation being impossible in the liq-

uid domain, a point force being applied at point P.

The above procedure is then repeated to recognize one connected component after the other, see Fig. 9.

This procedure is called the numbering algorithm and is detailed hereafter.

Recall that k(t) is the number of connected components of the gas domain at time t and Bi(t) is the ith

connected component (i.e. bubble number i). Let n(t) be the bubble numbering function, negative in the liq-
uid region X(t) and equal to i in bubble Bi(t). At each time step approximations kn, nn, Bn

i of k(tn), n(tn),
Bi(t

n) are computed as follows.

The algorithm is initialized by setting the number of bubbles kn to 0. Also, the function nn is set to 0 in

the whole gas domain KnXn and to �1 in the liquid domain Xn. The goal is to assign to each point x in the

gas an integer value nn(x) 6¼ 0, the so-called bubble number. The algorithm is illustrated in Fig. 9 and is the

following set: Hn = {x2K:nn(x) = 0}.



Fig. 9. Numbering algorithm of the gas bubbles. Initially the function nn equals zero everywhere in the gas domain. The domain Hn

corresponds to the set of points in the gas region that have no bubble number (nn(x) = 0, shaded region). At each iteration of the

algorithm a point P is chosen in Hn. Problem (9) is solved and a new bubble is numbered. Then, domain Hn is updated and another

point P 2 Hn is chosen. The algorithm stops when Hn = ;.
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While Hn 6¼ ;, do:

(1) Choose a point P in Hn.

(2) Solve the following problem: Find u : K ! R which satisfies:
�Du ¼ dP in Hn;

u ¼ 0 in K nHn;

½u� ¼ 0 on oHn;

8><
>: ð9Þ
where dP is Dirac delta function at point P and [u] is the jump of u through oHn.

(3) Increase the number of bubbles kn at time tn, kn = kn + 1.

(4) Define the bubble of gas number kn: Bn
kn ¼ fx 2 Hn : uðxÞ 6¼ 0g.

(5) Update the bubble numbering function nnðxÞ ¼ kn 8x 2 Bn
kn ;

(6) Update Hn for the next iteration,
Hn ¼ fx 2 K : nnðxÞ ¼ 0g:
The cost of this original numbering algorithm is bounded by the cost of solving kn times a Poisson prob-

lem in the gas domain. In the numerical experiments detailed hereafter the corresponding CPU time was

always less than 10 percent of the total CPU time.

3.3. Computation of the pressure in the gas

Once the connected components of gas are numbered, an approximation Pn
i of the pressure in bubble i at

time tn is computed following the description of Section 2.2. The pressure is constant inside each bubble of



A. Caboussat et al. / Journal of Computational Physics 203 (2005) 626–649 635
gas and is computed with the ideal gas law (6), except for bubbles in contact with a valve which have atmos-

pheric pressure, see Fig. 2.

In the case of a single bubble travelling in the liquid, see Fig. 3, the law of ideal gas yields:
Fig. 10

contrib
PnV n ¼ Pn�1V n�1;
which means that the number of molecules inside the bubble is conserved between time tn � 1 and tn. In the

case when two bubbles merge, see Fig. 5, this relation becomes:
Pn
1V

n
1 ¼ Pn�1

1 V n�1
1 þ Pn�1

2 V n�1
2 ;
which express again conservation of the number of molecules between tn � 1 and tn. These are the two sim-
plest situations and more complex pictures can be seen in the frame of free surface flows in complex geom-

etries since bubbles may merge and divide at the same time and the topology of the gas domain may change.

Splitting and merging of bubbles (see Figs. 6 and 7) are described in the following. Let

Bn�1
i ; Pn�1

i ; V n�1
i ; i ¼ 0; . . . ; kn�1 be the connected components of gas and their related pressure and vol-

ume at time tn � 1 and Bn
i ; Pn

i ; V n
i i ¼ 0; . . . ; kn the same variables at time tn. The bubble Bn�1

i may split

in different parts between time tn � 1 and time tn. Each of these parts contributes to a bubble Bn
j at time

tn. The volume fraction of bubble Bn�1
i which contributes to bubble Bn

j is noted V n�1=2
i;j . The computation

of the pressure is then decomposed in two steps, as illustrated in Fig. 10. First the volume fraction contri-
butions V n�1=2

i;j are computed. Then the pressure in the bubble Bn
j is computed by addition of the contribu-

tions of the different bubbles at time tn � 1:
Pn
j ¼

1

V n
j

Xkn�1

i¼0

Pn�1
i V n�1=2

i;j : ð10Þ
In practice, the most frequent cases encountered in the simulations are (i) the merging of two bubbles into

one or (ii) the splitting of one bubble into two, see Figs. 3–6. However, these splitting and/or merging of
bubbles may happen anywhere in the cavity, this being the case in the examples of Section 5. The above

procedure allows all possible cases to be considered while conserving the number of gas molecules trapped

by the liquid.
. At each time step, the merging/division of bubbles is split in two parts. First V n�1=2
i;j , the volume fraction of bubble Bn�1

i that

utes to bubble Bn
j is computed. Secondly, the pressure Pn

i is computed from conservation of the number of molecules.
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3.4. Diffusion step

The diffusion step consists in solving a generalized Stokes problem on the domain Xn using the predicted

velocity vn � 1/2 and the boundary condition (5). The following backwards Euler scheme is used:
Fig. 11

dashed
q
vn � vn�1=2

sn
� 2div lDðvnÞð Þ þ rpn ¼ f in Xn; ð11Þ

divvn ¼ 0 in Xn; ð12Þ

where vn � 1/2 is the prediction of the velocity obtained after the advection step. The boundary conditions on
the free surface between the fluid and the bubble number i depend on the gas pressure Pn

i and are given by

(5). The weak formulation corresponding to (11), (12) and (5) therefore consists in finding vn and pn such

that vn satisfies the essential boundary conditions on the boundary of the cavity K and
Z
Xn

vn � vn�1=2

sn
� w dxþ 2l

Z
Xn
DðvnÞ : DðwÞ dx�

Z
Xn
pndivw dx�

Z
Xn
f � w dx

þ
Xkn
i¼1

Z
oXn\oBn

i

P n
i n � w dS �

Z
Xn
qdivvn dx ¼ 0 ð13Þ
for all test functions (w,q) such that w vanishes on the boundary of the cavity where essential boundary
conditions are enforced.
4. Space discretization

Advection and diffusion phenomena being now decoupled, Eqs. (7) and (8) are solved using the method

of characteristics on a structured mesh of small cells in order to reduce numerical diffusion and have an

accurate approximation of the liquid region, see Fig. 13. Assume that the grid is made out of cubic cells
of size h, each cell being labeled by indices (ijk). Let un�1

ijk and vn�1
ijk be the approximate value of u and v

at the center of cell number (ijk) at time tn � 1. The unknown un�1
ijk is the volume fraction of liquid in the
. An example of two-dimensional advection of un�1
ij by snvn�1

ij , and projection on the grid. The advected cell is represented by the

lines. The four cells containing the advected cell receive a fraction of un�1
ij , according to the position of the advected cell.



Fig. 12. Effect of the SLIC algorithm on numerical diffusion. An example of two-dimensional advection and projection when the

volume fraction of liquid in the cell is un�1
ij ¼ 1

4
. Left: without SLIC, the volume fraction of liquid is advected and projected on four

cells, with contributions (from the top left cell to the bottom right cell) 3
16

1
4
, 1
16

1
4
, 9
16

1
4
, 3
16

1
4
. Right: with SLIC, the volume fraction of liquid is

pushed at one corner, then it is advected and projected on one cell only, with contribution 1
4
.
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cell ijk, see [3], and is the numerical approximation of the characteristic function u at time tn � 1 which is

piecewise constant on each cell of the structured grid. The advection step on cell number (ijk) consists in

advecting un�1
ijk and vn�1

ijk by snvn�1
ijk and then projecting the values on the structured grid. An example of cell

advection and projection is presented in Fig. 11 in two space dimensions.

In order to enhance the quality of the volume fraction of liquid, post-processing procedures have been

implemented. We refer to [19,20] for a detailed description in two and three space dimensions. The first pro-

cedure reduces numerical diffusion and is a simplified implementation of the simple linear interface calcu-
lation (SLIC) algorithm [22].

Consider cell number (ijk) being partially filled with liquid (this results from numerical diffusion), let un�1
ijk

be the corresponding volume fraction of liquid, this value being less than one. Instead of advecting un�1
ijk and

then projecting on the grid, the liquid is first pushed on the sides of the cell, then it is advected and projected

on the grid. A two-dimensional example is reported in Fig. 12.

The critical point is then to decide how to push the volume fraction of liquid in a given cell along the

sides of this cell. For a given cell, the choice depends on the volume fraction of liquid of the neighbours.

Precise examples are given in [19,20] for the two- and three-dimensional cases.
The conservation of the mass of liquid is guaranteed with the following algorithm. When the computed

values un
ijk are greater than one, a fraction of the liquid contained in the cavity is lost. The aim of our

decompression algorithm is to produce new values un
ijk which are between zero and one. The algorithm

is as follows. At each time step, all the cells having values un
ijk greater than one (strictly), or between zero

and one (strictly) are sorted according to their values un
ijk. This can be done in an efficient way using quick

sort algorithms. The cells having values un
ijk greater than one are called the dealer cells, whereas the cells

having values un
ijk between zero and one are called the receiver cells. The algorithm then consists in moving

the fraction of liquid in excess in the dealer cells to the receiver cells.
Once values un

ijk and v
n�1=2
ijk have been computed on the cells, values of the fraction of liquid un

P and of the

velocity field v
n�1

2
P are computed at the nodes P of the finite element mesh by multigrids restriction methods

(see e.g. [13]): for any vertex P of the finite element mesh let wP be the corresponding basis function (i.e. the

continuous, piecewise linear function having value one at P, zero at the other vertices). We consider all the

tetrahedrons K containing vertex P and all the cells (ijk) having center of mass Cijk contained in these tet-

rahedrons. Then, un
P , the volume fraction of liquid at vertex P and time tn is computed using the following

formula:



Fig. 13. Two-grids method, two- and three-dimensional representation. Advection step is solved on a structured mesh of small cubic

cells (right), while diffusion step and bubbles treatment are solved on a finite element unstructured mesh (right). In three space

dimensions, a hierarchical data structure reduces memory requirements since the number of cells is very large: the cavity is enclosed in a

set of windows containing sub-data structures called blocks, each block containing the cells. At each time step, only the blocks which

contains liquid are switched on for the computations.
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un
P ¼

P
K

P2K

P
ijk

Cijk2K

wP ðCijkÞun
ijk

P
K

P2K

P
ijk

Cijk2K

wP ðCijkÞ
:

The same kind of formula is used to obtain the predicted velocity vn�
1
2 at the vertices of the finite element

mesh. When these values are available at the vertices of the finite element mesh, the liquid region is defined

as follows. An element of the mesh is said to be liquid if (at least) one of its vertices P has a value un
P > 0:5.

The computational domain Xn used for solving (13) is then defined to be the union of all liquid elements.
Then, finite element techniques are used for solving (13) on an unstructured mesh. For details we refer to

[19,20]. Numerical experiments reported in [19,20] have shown that choosing the size of the cells of the

structured mesh is approximately 5–10 times smaller than the size of the finite elements is a good choice

to reduce numerical diffusion. Furthermore, since the characteristics method is used, the time step is not

restricted by the CFL number (which is the ratio between the time step times the maximal velocity divided



Fig. 14. Computation of the pressure. Two cases can occur. Left: the bubble at time tn intersects one of the previous bubbles at time

tn � 1, the pressure can be computed with (10). Right: the bubble at time tn does not intersect any bubble at previous time; the pressure

is then computed with (14).
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by the mesh size). Numerical results in [19,20] have shown that a good choice generally consists in choosing

CFL numbers ranging from 1 to 5.

The numbering of the bubbles of gas requires to solving several Poisson problems (9). These Poisson

problems are solved on the finite element unstructured mesh, using piecewise linear finite elements.

The pressure inside each bubble of gas is computed with (10) and the approximations of the fractions of

volumes V n�1=2
i;j are computed on the finite element mesh. Two situations may occur, as illustrated in Fig. 14.

When bubble j at time tn intersects at least one bubble of time tn � 1, that is when there is at least one index i

such that V n�1=2
i;j 6¼ 0, then the pressure Pn

j is computed with (10) because it is assumed that a part of bubble j

at time tn is made by bubble i at time tn � 1.

On the other hand, if the time step s is too large (that is if V n�1=2
i;j ¼ 0 for all i ¼ 0; . . . ; kn�1), the bubble

Bn
j may not intersect any bubble of time tn � 1, see Fig. 14. In this case, the origin of bubble number j is

unknown. Relation (10) is useless and then the pressure Pn
j is computed by dividing the remaining number

of molecules at time tn � 1 by the remaining volume at time tn:
Pn
j ¼

Pn�1V n�1=2
� �

r

ðV nÞr
; ð14Þ
where
Pn�1V n�1=2
� �

r
¼
Xkn�1

i¼0

Pn�1
i V n

i �
Xkn
j¼0

Pn�1
i V n�1=2

i;j

 !
;

ðV nÞr ¼
Xkn
j¼0

V n
j �

Xkn�1

i¼0

V n�1=2
i;j

 !
:

ð15Þ
This latter case appears generally when the time step is too large compared to the size of the bubble. This
procedure then permits to conserve the mass of gas.

One degree of freedom is added at each vertex of the finite element mesh in order to describe the bubble

number (the degree of freedom equals i if the vertex belongs to bubble number i). Furthermore, two addi-

tional arrays contain the pressure and volume of each bubble of gas. In the numerical results detailed here-

after the CPU time overhead due to bubbles computations is always less than 10% of total CPU time.
5. Numerical results

Numerical results in two and three space dimensions are presented to validate our model and compared

with previous results [19,20]. All the computations were performed on a computer with single processor

Pentium Xeon 2.8 GHz CPU, 3 Gb memory and running under Linux operating system.
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5.1. Convergence of the volume fraction of liquid given a prescribed velocity

The goal of this section is to validate the computation of the volume fraction of liquid using the algo-

rithm described in Section 4. Standard two-dimensional test cases are taken from [3,26]. The translation

and rotation of a mass of fluid are presented, as well as stretching flows examples.
The first situation is the translation of a circle of liquid, with given velocity and without external forces.

The cavity domain is the 0.1 · 0.1 square and the center of a circle of radius 0.015 is initially located at

(0.02,0.05). The advection velocity is horizontal and equals to 1. Three different meshes are used. The coarse

finite element mesh is constituted by 40 · 40 squares, each divided in four triangles, the middle mesh is

divided in 80 · 80, while the finer mesh is composed by 120 · 120 squares. The underlying regular grid is

composed, respectively, by 120 · 120 cells, 240 · 240 cells and 360 · 360 cells.

Fig. 15 illustrates the position of the interface at times t = 0 and t = 0.06. The time step is equal to

s = 0.002. The total volume of liquid is conserved as well as the mass of liquid.
Fig. 15. Translation of a circle of liquid, representation of the computed interface at initial time and after t = 0.06. Left: coarse mesh,

middle: middle mesh, right: fine mesh.

Fig. 16. Rotation of a circle of liquid, representation of the computed interface at initial time and after t = 0.126. Left: coarse mesh,

middle: middle mesh, right: fine mesh.

Fig. 17. Single vortex test case, representation of the computed interface at times t = 1 (maximal deformation) and t = 2 (return to

initial shape). Left: coarse mesh, middle: middle mesh, right: fine mesh.



Fig. 18. Linear filling of a three-dimensional channel: two-dimensional cut. The interface moves with constant velocity v m/s.
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In the second situation, (the same circle of liquid is rotated with given velocity, following the situation

described in [3]. The advection velocity is given by v(x,y) = 25(0.05 � y, x � 0.05). The meshes and time step

are the same as the ones used for the translation test case. Fig. 16 illustrates the position of the interface at

times t = 0 and t = 0.126, i.e. after a half rotation.
Fig. 19. Filling of a rectilinear channel with compression of gas. Comparisons between three different mesh sizes. Top: pressure in the

gas function of time, bottom: error function of the mesh size on a log–log scale.



Fig. 20. Meshes used for the computations of the S-shape channel: left: 2D coarse mesh, right: 3D mesh extracted with five layers of

2D coarse mesh.
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The last test case deals with stretching flows. We consider the classical test case widely treated in the lit-

erature, see e.g. [3,26] which is the ‘‘vortex-in-a-box’’ test case. The initial liquid domain is a circle of radius

0.015 with its center located in (0.05,0.075). The given velocity is given by the stream function:
wðx; yÞ ¼ 0:01psin2ðpx=0:1Þsin2ðpy=0:1Þ cosðpt=2Þ:

This test case consists in the stretching of the initial circle of liquid with a given velocity. This velocity is

periodic in time, so that the initial liquid domain is reached after a time T = 2. Fig. 17 illustrates the liq-

uid–gas interface for the three meshes. The interface with maximum deformation and the interface after

one period of time are represented and numerical results show the efficiency of the method.

5.2. Linear filling

Water enters a rectilinear three-dimensional channel and compresses the gas contained inside the chan-
nel. The dimensions of the channel are 0.5 m · 0.08 m · 0.1 m and water is injected at horizontal speed 4.2

m/s. At time T ¼ 0:5
4:2

s, the channel is filled. Fig. 18 shows a two-dimensional cut of the channel. Slip bound-

ary conditions are enforced on the lateral sides of the cavity. The mesh is a regular grid of 5049 nodes and

24,000 tetrahedrons.

For this simple test case, the exact volume of gas is given by 0.08 · 0.1 · (0.5 � 4.2 · t) m3, so that the

exact volume and pressure can be computed with the ideal gas law. Three different regular meshes are con-

sidered, a coarse mesh with 1380 nodes and 6000 elements, a middle mesh with 9449 nodes and 48,000 ele-

ments and a finer mesh with 69,657 nodes and 384,000 elements. Final time is T = 0.120 s and the time step
is, respectively, s = 0.002 s, s = 0.001 s and s = 0.0005 s. The total CPU time is, respectively, 5 min, 92 min

and 25 h and is multiplied approximately by 24 = 16 each time that the mesh size and time step are divided

by 2. The number of operations is thus of order OðN 4Þ, where N is the number of discretization points along

each axis. This is the same order of the computational cost required to solving a Laplace problem with the

conjugate gradient algorithm without preconditioning (see for instance [4]). Fig. 19 shows that the compu-

tation of the pressure in the gas converges when the mesh size h tends to zero, the rate of convergence being

approximately Oðh1=4Þ.



Fig. 21. S-shaped channel: influence of gas bubbles. Computations with coarse mesh and aT = 4h2 in (3). Column one: 2D results

without bubbles, column two: 2D results with bubbles, column three: 3D results with bubbles in the middle plane, and column four:

experimental results [28]. First row: time equals 7.15 ms, second row: 25.3 ms, third row: 39.3 ms and fourth row: 53.6 ms.

A. Caboussat et al. / Journal of Computational Physics 203 (2005) 626–649 643
5.3. S-shaped channel

An S-shaped channel lying between two horizontal plates is filled. Two- and three-dimensional results

are compared with experiment [28]. The channel is contained in a 0.17 m · 0.24 m rectangle. In the

three-dimensional case, the distance between the two horizontal plates is 0.008 m. Water is injected with
constant velocity 8.7 m/s which corresponds to the experimental value reported in [28]. A valve is located

at the top of the channel, as in Fig. 2, allowing gas to escape. Density and viscosity are taken to be, respec-

tively, q = 1000 kg/m3 and l = 0.01 kg/(ms) and initial pressure in the gas is Patmo = 101300.0 Pa.



Fig. 22. S-shaped channel: convergence with mesh size. Computations with gas bubbles, aT = 4h2 in (3), 2D results. Left: coarse mesh,

middle: middle mesh, right: fine mesh and extreme right: experimental results [28]. First row: time equals 25.3 ms and second row: 39.3

ms.

Fig. 23. S-shaped channel: convergence with mesh size. Computations with gas bubbles, aT = 4h2 in (3), 3D results. Left: coarse mesh,

middle: middle mesh, right: fine mesh and extreme right: experimental results [28]. First row: time equals 25.3 ms and second row: 39.3

ms.
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Fig. 24. S-shaped channel: influence of the coefficient aT in (3). Computations with gas bubbles, 3D results, middle mesh. First row:

time equals 25.3 ms, second row: time equals 39.3 ms.

Fig. 25. 3D mould filling: finite element mesh.
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Several meshes are considered. In two dimensions, the coarser mesh has 3483 nodes and 6418 elements;

the middle mesh has 8249 nodes and 15,654 elements while the fine mesh is made out of 14,550 nodes and

27,972 elements, see Fig. 20. The three-dimensional meshes are constructed using 5, respectively, 8 and 10

layers of the 2D mesh.

When comparing numerical results to experimental ones, we have observed that the liquid goes faster in
the simulations than in the experiments. This is probably due to inexact slip boundary conditions. On the

other hand, due to large Reynolds numbers (Re . 106), no slip boundary conditions are not conceivable

since they would require extremely fine layered meshes along the boundary of the cavity. As a remedy, slip

boundary conditions are enforced, but a turbulent viscosity is added, Eq. (3), the coefficient aT being pro-

portional to h2, as proposed in [32]. Since the ratio between Capillary number and Reynolds number is very

small (Ca . 1.5), surface tension effects can be neglected.

Numerical results are first presented with the coarser mesh and aT = 4h2. The final time is T = 0.00532 s

and the time step is s = 0.0001 s. In Fig. 21, the experiment is compared to 2D and 3D computations when
the influence of the surrounding gas is taken into account and to 2D computations without the influence of

gas. When the gas is not taken into account, numerical results show that the bubble of trapped gas at the

bottom of the cavity vanishes rapidly. On the other side, when the effects of the surrounding gas onto the

liquid are taken into account, numerical results are much closer to experiment. The CPU time for the simu-

lations in two space dimensions is approximately 14 min without the bubbles computations and 15 min with

the bubbles computations. In three space dimensions, these CPU times become 319 min without taking into
Fig. 26. 3D mould filling. Liquid region: from top to bottom, left to right at times 0.05, 0.10, 0.15 and 0.20 s.
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account the gas effect and 344 min with the bubbles computations. Most of the CPU time is spent to solve

Stokes problem.

In both cases, the bubbles existing in the flow only split and/or merge according to the situations de-

scribed in Figs. 3–6. These splitting/merging appear at different places of the physical domain at the same

time. In most cases, the situation described in Fig. 14 does not happen.
The influence of the mesh size is reported in Figs. 22 and 23. The time steps are s = 0.0001 s for the

coarse mesh, s = 0.00008 s for the middle mesh and s = 0.00005 s for the fine mesh. The size of the cells

of the structured mesh used for advection step is approximately 5–10 times smaller than the size of the finite

elements, see [19,20]. Numerical results show that the behaviour of bubbles is well simulated even though

the fluid flow is slightly too fast. The total CPU time for 3D computations to reach final time is approx-

imately 29 h for the middle mesh and 110 h for the finer mesh.

Numerical results are presented for several coefficients aT in Fig. 24 and show in particular that the fluid

velocity decreases when aT increases.

5.4. 3D mould filling

A mould with four arms is considered, see Fig. 25. Water enters from the top of the mould with velocity

4.2 m/s. Two arms are closed, while there is a valve at the end of the other arms so that gas can escape.

Viscosity is l = 0.01 kg/(ms), while density is q = 1000 kg/m3. Initial pressure in the gas is Patmo = 101300.0
Fig. 27. 3D mould filling (cted). Volume fraction of liquid: from top to bottom, left to right at times 0.25, 0.30, 0.35 and 0.40 s.
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Pa. Gravity forces are neglected and aT = 0 (no turbulence modelling). The mesh has 31,961 vertices and

168,000 elements and the cells grid contains approximately 50,000,000 cells. The final time of simulation

is 0.5 s with time step s = 0.001 s. The CPU time is approximately 24 h. For this test case, the goal is to

see the influence of gas on the filling of each arm. Figs. 26 and 27 show that if a valve is located at the

end of an arm, the arm is filled significantly faster.
6. Conclusion and perspectives

A numerical method that takes into account compressibility of gas surrounding an incompressible free

surface flows has been presented. The characteristic function of the liquid domain is used to describe the

interface. The unknowns are velocity and pressure in the fluid and constant pressure in each connected

component of gas surrounded by the liquid. A splitting algorithm is used to decouple physical phenomena.
A numbering algorithm is implemented to recognize the bubbles of gas. The pressure inside each of the

bubbles is computed with the ideal gas law. Numerical results show that the effect of the bubbles of gas

on the shape of the liquid–gas free surface cannot be neglected. The CPU time used for bubbles computa-

tions is small related to the CPU time used to compute the free surface liquid flow. Surface tension effects

remain to be added when the Capillary number is not significantly smaller than the Reynolds number.
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